Surface enhanced fluorescence effect improves the in vivo detection of amyloid aggregates

Cabrera, Pablo; Jara-Guajardo, Pedro; Oyarzun, Maria Paz; Parra-Munoz, Nicole; Campos, Aldo; Soler, Monica; Alvarez, Alejandra; Morales-Zavala, Francisco; Araya, Eyleen; Minniti, Alicia N.; Aldunate, Rebeca; Kogan, Marcelo J.

Abstract

The beta-amyloid (A beta) peptide is one of the key etiological agents in Alzheimer's disease (AD). The in vivo detection of A beta species is challenging in all stages of the illness. Currently, the development of fluorescent probes allows the detection of A beta in animal models in the near-infrared region (NIR). However, considering future applications in biomedicine, it is relevant to develop strategies to improve detection of amyloid aggregates using NIR probes. An innovative approach to increase the fluorescence signal of these fluorophores is the use of plasmonic gold nanoparticles (surface-enhanced fluorescence effect). In this work, we improved the detection of A beta aggregates in C. elegans and mouse models of AD by co-administering functionalized gold nanorods (GNRs-PEG-D1) with the fluorescent probes CRANAD-2 or CRANAD-58, which bind selectively to different amyloid species (soluble and insoluble). This work shows that GNRs improve the detection of A beta using NIR probes in vivo. (C) 2022 Published by Elsevier Inc.

Más información

Título según WOS: Surface enhanced fluorescence effect improves the in vivo detection of amyloid aggregates
Título de la Revista: NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE
Volumen: 44
Editorial: Elsevier
Fecha de publicación: 2022
DOI:

10.1016/j.nano.2022.102569

Notas: ISI