Participation of two sRNA RyhB homologs from the fish pathogen Yersinia ruckeri in bacterial physiology

Acuna, Lillian G.; Jose Barros, M.; Montt, Fernanda; Penaloza, Diego; Nunez, Paula; Valdes, Ivan; Gil, Fernando; Fuentes, Juan A.; Calderon, Ivan L.

Abstract

Small noncoding RNAs (sRNAs) are important regulators of gene expression and physiology in bacteria. RyhB is an iron-responsive sRNA well characterized in Escherichia coli and conserved in other Enterobacteriaceae. In this study, we identified and characterized two RyhB homologs (named RyhB-1 and RyhB-2) in the fish pathogen Yersinia ruckeri. We found that, as in other Enterobacteriaceae, both RyhB-1 and RyhB-2 are induced under iron starvation, repressed by the Fur regulator, and depend on Hfq for stability. Despite these similarities in expression, the mutant strains of Y. ruckeri lacking RyhB-1 (Delta ryhB-1) or RyhB-2 (Delta ryhB-2) exhibited differential phenotypes. In comparison with the wild type, the Delta ryhB-1 strain showed a hypermotile phenotype, reduced biofilm formation, increased replication rate, faster growth, and increased ATP levels in bacterial cultures. By contrast, in salmon cell cultures, the Delta ryhB-1 strain exhibited an increased survival. On the other hand, the Delta ryhB-2 strain was non-motile and showed augmented biofilm formation as compared to the wild type. The expression of a subset of RyhB conserved targets, selected from different bacterial species, was analyzed by quantitative RT-PCR in wild type, Delta ryhB-1, Delta ryhB-2, and Delta ryhB-1 Delta ryhB-2 strains cultured in iron-depleted media. RyhB-1 negatively affected the expression of most analyzed genes (sodB, acnA, sdhC, bfr, fliF, among others), whose functions are related to metabolism and motility, involving iron-containing proteins. Among the genes analyzed, only sdhC and bfr appeared as targets for RyhB-2. Taken together, these results indicate that Y. ruckeri RyhB homologs participate in the modulation of the bacterial physiology with non-redundant roles.

Más información

Título según WOS: Participation of two sRNA RyhB homologs from the fish pathogen Yersinia ruckeri in bacterial physiology
Título de la Revista: MICROBIOLOGICAL RESEARCH
Volumen: 242
Editorial: Elsevier GmbH
Fecha de publicación: 2021
DOI:

10.1016/j.micres.2020.126629

Notas: ISI