Coupled system of Korteweg-de Vries equations type in domains with moving boundaries
Abstract
We consider the initial-boundary value problem in a bounded domain with moving boundaries and nonhomogeneous boundary conditions for the coupled system of equations of Korteweg-de Vries (KdV)-type modelling strong interactions between internal solitary waves. Finite domains of wave propagation changing in time arise naturally in certain practical situations when the equations are used as a model for waves and a numerical scheme is needed. We prove a global existence and uniqueness for strong solutions for the coupled system of equations of KdV-type as well as the exponential decay of small solutions in asymptotically cylindrical domains. Finally, we present a numerical scheme based on semi-implicit finite differences and we give some examples to show the numerical effect of the moving boundaries for this kind of systems. © 2007 Elsevier B.V. All rights reserved.
Más información
Título según WOS: | Coupled system of Korteweg-de Vries equations type in domains with moving boundaries |
Título según SCOPUS: | Coupled system of Korteweg-de Vries equations type in domains with moving boundaries |
Título de la Revista: | JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS |
Volumen: | 220 |
Número: | 01-feb |
Editorial: | ELSEVIER SCIENCE BV |
Fecha de publicación: | 2008 |
Página de inicio: | 290 |
Página final: | 321 |
Idioma: | English |
URL: | http://linkinghub.elsevier.com/retrieve/pii/S0377042707004529 |
DOI: |
10.1016/j.cam.2007.08.008 |
Notas: | ISI, SCOPUS |