Higher-dimensional charged black hole solutions with a nonlinear electrodynamics source
Abstract
We obtain electrically charged black hole solutions of the Einstein equations in arbitrary dimensions with a nonlinear electrodynamics source. The matter source is derived from a Lagrangian given by an arbitrary power of the Maxwell invariant. The form of the general solution suggests a natural partition for the different ranges of this power. For a particular range, we exhibit a class of solutions whose behavior resembles the standard Reissner-Nordstrom black holes. There also exists a range for which the black hole solutions approach asymptotically the Minkowski spacetime slower than the Schwarzschild spacetime. We have also found a family of non-asymptotical flat black hole solutions with an asymptotic behavior growing slower than the Schwarzschild-(anti)-de Sitter spacetime. In odd dimensions, there exists a critical value of the exponent for which the metric involves a logarithmic dependence. This critical value corresponds to the transition between the standard behavior and the solution decaying to Minkowski slower than the Schwarzschild spacetime. © 2008 IOP Publishing Ltd.
Más información
Título según WOS: | Higher-dimensional charged black hole solutions with a nonlinear electrodynamics source |
Título según SCOPUS: | Higher-dimensional charged black hole solutions with a nonlinear electrodynamics source |
Título de la Revista: | CLASSICAL AND QUANTUM GRAVITY |
Volumen: | 25 |
Número: | 19 |
Editorial: | IOP PUBLISHING LTD |
Fecha de publicación: | 2008 |
Página de inicio: | 1 |
Página final: | 10 |
Idioma: | English |
URL: | http://stacks.iop.org/0264-9381/25/i=19/a=195023?key=crossref.702198e09a47fc6867d9b9a2db8b4a5a |
DOI: |
10.1088/0264-9381/25/19/195023 |
Notas: | ISI, SCOPUS |