Blockwise Euclidean likelihood for spatio-temporal covariance models

Morales-Onate, Victor; Crudu, Federico; Bevilacqua, Moreno

Abstract

A spatio-temporal blockwise Euclidean likelihood method for the estimation of covariance models when dealing with large spatio-temporal Gaussian data is proposed. The method uses moment conditions coming from the score of the pairwise composite likelihood. The blockwise approach guarantees considerable computational improvements over the standard pairwise composite likelihood method. In order to further speed up computation, a general purpose graphics processing unit implementation using OpenCL is implemented. The asymptotic properties of the proposed estimator are derived and the finite sample properties of this methodology by means of a simulation study highlighting the computational gains of the OpenCL graphics processing unit implementation. Finally, there is an application of the estimation method to a wind component data set. (C) 2021 EcoSta Econometrics and Statistics. Published by Elsevier B.V. All rights reserved.

Más información

Título según WOS: Blockwise Euclidean likelihood for spatio-temporal covariance models
Título de la Revista: ECONOMETRICS AND STATISTICS
Volumen: 20
Editorial: Elsevier
Fecha de publicación: 2021
Página de inicio: 176
Página final: 201
DOI:

10.1016/j.ecosta.2021.01.001

Notas: ISI