Evaluation of DRAINMOD using saturated hydraulic conductivity estimated by a pedotransfer function model

Salazar, O; Wesstrom, I; Joel A.

Abstract

Direct measurement of soil saturated hydraulic conductivity (Ks) is time-consuming and therefore costly. The ROSETTA pedotransfer function model is able to estimate Ks from soil textural data, bulk density and one or two water retention points. This study evaluated the feasibility of running the DRAINMOD field-scale hydrological model with Ks input produced using ROSETTA. A hierarchical approach was adopted to estimate Ks using ROSETTA, with four limited-more extended sets of soil information used as inputs: USDA textural class (H1); texture (H2); texture and bulk density (H3); texture, bulk density, water retention at -33 kPa (θ33 kPa) and -1500 kPa (θ1500 kPa) (H4). ROSETTA-estimated Ks values from these four groups (H1-H4) were used in DRAINMOD to simulate drain outflows during a 4-year period from a conventional drainage plot (CD) and two controlled drainage plots (CWT1 and CWT2) located in south-east Sweden. The DRAINMOD results using ROSETTA-estimated Ks values were compared with observed values and with model results using laboratory-measured Ks values (H0). Deviations in simulated drainage outflow (D), infiltration (F) and evapotranspiration (ET) resulting from the use of ROSETTA-estimated rather than laboratory-measured Ks values were evaluated. During the study period, statistical comparisons showed good agreement on a monthly basis between observed and DRAINMOD-simulated drainage rates using five soil datasets (H0, H1, H2, H3 and H4). The monthly mean absolute error (MAE) ranged from 0.57 to 0.82 cm for CD, 0.38 to 0.41 cm for CWT1, and 0.15 to 0.22 cm for CWT2. On a monthly basis, the modified coefficient efficiency (E′) values were in the range of 0.62 to 0.74 for CD, 0.72 to 0.74 for CWT1, and 0.79 to 0.86 for CWT2. The modified index of agreement (d′) for monthly predictions ranged from 0.80 to 0.86 cm for CD, 0.87 to 0.88 cm for CWT1, and 0.89 to 0.93 cm for CWT2. The absolute values of the percent-normalised error (NE) on an overall basis when using ROSETTA-estimated rather than laboratory-measured Ks values were less than 3% in E, less than 1% in F, and less than 15% in D. The results suggest that ROSETTA-estimated Ks values can be used in DRAINMOD to simulate drainage outflows as accurately as laboratory-measured Ks values (H0) in coarse-textured soils. © 2008 Elsevier B.V. All rights reserved.

Más información

Título según WOS: Evaluation of DRAINMOD using saturated hydraulic conductivity estimated by a pedotransfer function model
Título según SCOPUS: Evaluation of DRAINMOD using saturated hydraulic conductivity estimated by a pedotransfer function model
Título de la Revista: AGRICULTURAL WATER MANAGEMENT
Volumen: 95
Número: 10
Editorial: Elsevier
Fecha de publicación: 2008
Página de inicio: 1135
Página final: 1143
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S037837740800108X
DOI:

10.1016/j.agwat.2008.04.011

Notas: ISI, SCOPUS