Extended self-dual configurations as stable exact solutions in Born-Infeld theory
Abstract
A class of exact solutions to the Born-Infeld field equations, over manifolds of any even dimension, is constructed. They are an extension of the self-dual configurations. They are local minima of the action for Riemannian base manifolds and local minima of the Hamiltonian for pseudo Riemannian ones. A general explicit expression for the Born-Infeld determinant is obtained, for any dimension of space-time.
Más información
Título según WOS: | ID WOS:000172074100065 Not found in local WOS DB |
Título de la Revista: | PHYSICAL REVIEW D |
Volumen: | 64 |
Número: | 10 |
Editorial: | American Physical Society |
Fecha de publicación: | 2001 |
DOI: |
10.1103/PhysRevD.64.106003 |
Notas: | ISI |