Gerbes and duality

Caicedo, MI; Martin, I; Restuccia, A

Abstract

We describe a global approach to the study of duality transformations between antisymmetric fields with transitions and argue that the natural geometrical setting for the approach is that of gerbes; these objects are mathematical constructions generalizing U(1) bundles and are similarly classified by quantized charges. We address the duality maps in terms of the potentials rather than on their field strengths and show the quantum equivalence between dual theories which in turn allows a rigorous proof of a generalized Dirac quantization condition on the couplings. Our approach needs the introduction of an auxiliary form satisfying a global constraint which in the case of 1-form potentials coincides with the quantization of the magnetic flux. We apply our global approach to refine the proof of the duality equivalence between the d = 11 supermembrane and d = 10 HA Dirichlet supermembrane. (C) 2002 Elsevier Science (USA).

Más información

Título según WOS: ID WOS:000177960100002 Not found in local WOS DB
Título de la Revista: ANNALS OF PHYSICS
Volumen: 300
Número: 1
Editorial: ACADEMIC PRESS INC ELSEVIER SCIENCE
Fecha de publicación: 2002
Página de inicio: 32
Página final: 53
DOI:

10.1006/aphy.2002.6283

Notas: ISI