Supersymmetric exact sequence, heat kernel and super Korteweg-de Vries hierarchy

Andrea, S; Restuccia, A; Sotomayor, A

Abstract

We introduce the free N=1 supersymmetric derivation ring and prove the existence of an exact sequence of supersymmetric rings and linear transformations. We apply necessary and sufficient conditions arising from this exact supersymmetric sequence to obtain the essential relations between conserved quantities, gradients and the N=1 super Korteweg-de Vries (KdV) hierarchy. We combine this algebraic approach with an analytic analysis of the super heat operator. We obtain the explicit expression for the Green's function of the super heat operator in terms of a series expansion and discuss its properties. The expansion is convergent under the assumption of bounded bosonic and fermionic potentials. We show that the asymptotic expansion when t-->0(+) of the Green's function for the superheat operator evaluated over its diagonal generates all the members of the N=1 super KdV hierarchy.(C) 2004 American Institute of Physics.

Más información

Título según WOS: ID WOS:000220875800001 Not found in local WOS DB
Título de la Revista: JOURNAL OF MATHEMATICAL PHYSICS
Volumen: 45
Número: 5
Editorial: AMER INST PHYSICS
Fecha de publicación: 2004
Página de inicio: 1715
Página final: 1729
DOI:

10.1063/1.1650047

Notas: ISI