Supersymmetric exact sequence, heat kernel and super Korteweg-de Vries hierarchy
Abstract
We introduce the free N=1 supersymmetric derivation ring and prove the existence of an exact sequence of supersymmetric rings and linear transformations. We apply necessary and sufficient conditions arising from this exact supersymmetric sequence to obtain the essential relations between conserved quantities, gradients and the N=1 super Korteweg-de Vries (KdV) hierarchy. We combine this algebraic approach with an analytic analysis of the super heat operator. We obtain the explicit expression for the Green's function of the super heat operator in terms of a series expansion and discuss its properties. The expansion is convergent under the assumption of bounded bosonic and fermionic potentials. We show that the asymptotic expansion when t-->0(+) of the Green's function for the superheat operator evaluated over its diagonal generates all the members of the N=1 super KdV hierarchy.(C) 2004 American Institute of Physics.
Más información
Título según WOS: | ID WOS:000220875800001 Not found in local WOS DB |
Título de la Revista: | JOURNAL OF MATHEMATICAL PHYSICS |
Volumen: | 45 |
Número: | 5 |
Editorial: | AMER INST PHYSICS |
Fecha de publicación: | 2004 |
Página de inicio: | 1715 |
Página final: | 1729 |
DOI: |
10.1063/1.1650047 |
Notas: | ISI |