Tuning of model predictive engine controllers over transient drive cycles

Maass, Alejandro, I; Manzie, Chris; Shames, Iman; Chin, Robert; Nesic, Dragan; Ulapane, Nalika; Nakada, Hayato

Abstract

A framework for tuning the parameters of model predictive controllers (MPCs) based on gradient-free optimisation (GFO) is proposed. Efficient calibration of MPCs is often a difficult task given the large number of tuning parameters and their non-intuitive correlation with the output response. We propose an efficient and systematic framework for the tuning of MPC parameters that can be implemented iteratively within the closed-loop setting. The performance of the proposed GFO-based algorithm is evaluated through its application to air-path control for diesel engines over simulations and experiments. We illustrate that the tuned parameters provide satisfactory tracking of reference trajectories over engine drive cycles with only a few iterations. Thereby, we extend existing MPC tuning approaches that calibrate parameters using step responses on the fuel rate and engine speed onto tuning over a full drive cycle response. Copyright (C) 2020 The Authors.

Más información

Título según WOS: ID WOS:000652593600135 Not found in local WOS DB
Título de la Revista: IFAC PAPERSONLINE
Volumen: 53
Número: 2
Editorial: Elsevier
Fecha de publicación: 2020
Página de inicio: 14022
Página final: 14027
DOI:

10.1016/j.ifacol.2020.12.923

Notas: ISI