Tuning of model predictive engine controllers over transient drive cycles
Abstract
A framework for tuning the parameters of model predictive controllers (MPCs) based on gradient-free optimisation (GFO) is proposed. Efficient calibration of MPCs is often a difficult task given the large number of tuning parameters and their non-intuitive correlation with the output response. We propose an efficient and systematic framework for the tuning of MPC parameters that can be implemented iteratively within the closed-loop setting. The performance of the proposed GFO-based algorithm is evaluated through its application to air-path control for diesel engines over simulations and experiments. We illustrate that the tuned parameters provide satisfactory tracking of reference trajectories over engine drive cycles with only a few iterations. Thereby, we extend existing MPC tuning approaches that calibrate parameters using step responses on the fuel rate and engine speed onto tuning over a full drive cycle response. Copyright (C) 2020 The Authors.
Más información
Título según WOS: | ID WOS:000652593600135 Not found in local WOS DB |
Título de la Revista: | IFAC PAPERSONLINE |
Volumen: | 53 |
Número: | 2 |
Editorial: | Elsevier |
Fecha de publicación: | 2020 |
Página de inicio: | 14022 |
Página final: | 14027 |
DOI: |
10.1016/j.ifacol.2020.12.923 |
Notas: | ISI |