SimText: a text mining framework for interactive analysis and visualization of similarities among biomedical entities
Abstract
Literature exploration in PubMed on a large number of biomedical entities (e.g. genes, diseases or experiments) can be time-consuming and challenging, especially when assessing associations between entities. Here, we describe SimText, a user-friendly toolset that provides customizable and systematic workflows for the analysis of similarities among a set of entities based on text. SimText can be used for (i) text collection from PubMed and extraction of words with different text mining approaches, and (ii) interactive analysis and visualization of data using unsupervised learning techniques in an interactive app.
Más información
Título según WOS: | SimText: a text mining framework for interactive analysis and visualization of similarities among biomedical entities |
Título de la Revista: | BIOINFORMATICS |
Volumen: | 37 |
Número: | 22 |
Editorial: | OXFORD UNIV PRESS |
Fecha de publicación: | 2021 |
Página de inicio: | 4285 |
Página final: | 4287 |
DOI: |
10.1093/bioinformatics/btab365 |
Notas: | ISI |