An extension of the proximal point algorithm beyond convexity

Grad, Sorin-Mihai; Lara, Felipe

Abstract

We introduce and investigate a new generalized convexity notion for functions called prox-convexity. The proximity operator of such a function is single-valued and firmly nonexpansive. We provide examples of (strongly) quasiconvex, weakly convex, and DC (difference of convex) functions that are prox-convex, however none of these classes fully contains the one of prox-convex functions or is included into it. We show that the classical proximal point algorithm remains convergent when the convexity of the proper lower semicontinuous function to be minimized is relaxed to prox-convexity.

Más información

Título según WOS: An extension of the proximal point algorithm beyond convexity
Título de la Revista: JOURNAL OF GLOBAL OPTIMIZATION
Volumen: 82
Número: 2
Editorial: Springer
Fecha de publicación: 2022
Página de inicio: 313
Página final: 329
DOI:

10.1007/s10898-021-01081-4

Notas: ISI