An extension of the proximal point algorithm beyond convexity
Abstract
We introduce and investigate a new generalized convexity notion for functions called prox-convexity. The proximity operator of such a function is single-valued and firmly nonexpansive. We provide examples of (strongly) quasiconvex, weakly convex, and DC (difference of convex) functions that are prox-convex, however none of these classes fully contains the one of prox-convex functions or is included into it. We show that the classical proximal point algorithm remains convergent when the convexity of the proper lower semicontinuous function to be minimized is relaxed to prox-convexity.
Más información
Título según WOS: | An extension of the proximal point algorithm beyond convexity |
Título de la Revista: | JOURNAL OF GLOBAL OPTIMIZATION |
Volumen: | 82 |
Número: | 2 |
Editorial: | Springer |
Fecha de publicación: | 2022 |
Página de inicio: | 313 |
Página final: | 329 |
DOI: |
10.1007/s10898-021-01081-4 |
Notas: | ISI |