Relaxed-inertial proximal point type algorithms for quasiconvex minimization

Grad, Sorin Mihai; Lara, Felipe; Marcavillaca, Raul T.

Abstract

We propose a relaxed-inertial proximal point type algorithm for solving optimization problems consisting in minimizing strongly quasiconvex functions whose variables lie in finitely dimensional linear subspaces. A relaxed version of the method where the constraint set is only closed and convex is also discussed, and so is the case of a quasiconvex objective function. Numerical experiments illustrate the theoretical results.

Más información

Título de la Revista: JOURNAL OF GLOBAL OPTIMIZATION
Volumen: 85
Número: 3
Editorial: Springer
Fecha de publicación: 2023
Página de inicio: 615
Página final: 635
Idioma: Ingles
URL: https://link.springer.com/article/10.1007/s10898-022-01226-z
Notas: WOS