COUNTEREXAMPLES TO RUELLE'S INEQUALITY IN THE NONCOMPACT CASE
Abstract
In this paper we show that there exist smooth dynamical systems defined on noncompact Riemannian manifolds that do not satisfy Ruelle's inequality between entropy and Lyapunov exponents. More precisely, we construct dynamical systems that look like suspension flows over countable interval exchange transformations, so that the local behavior is that of a translation, whereas the entropy can take any nonzero value.
Más información
Título según WOS: | ID WOS:000393926100002 Not found in local WOS DB |
Título de la Revista: | ANNALES DE L INSTITUT FOURIER |
Volumen: | 67 |
Número: | 1 |
Editorial: | ANNALES INST FOURIER |
Fecha de publicación: | 2017 |
Página de inicio: | 23 |
Página final: | 41 |
DOI: |
10.5802/aif.3076 |
Notas: | ISI |