ON THE ACCURACY OF FINITE ELEMENT APPROXIMATIONS TO A CLASS OF INTERFACE PROBLEMS

Guzman, Johnny; Sanchez, Manuel A.; Sarkis, Marcus

Abstract

We define piecewise linear and continuous finite element methods for a class of interface problems in two dimensions. Correction terms are added to the right-hand side of the natural method to render it second-order accurate. We prove that the method is second-order accurate on general quasi-uniform meshes at the nodal points. Finally, we show that the natural method, although non-optimal near the interface, is optimal for points O(root h log(1/h)) away from the interface.

Más información

Título según WOS: ID WOS:000379063300001 Not found in local WOS DB
Título de la Revista: MATHEMATICS OF COMPUTATION
Volumen: 85
Número: 301
Editorial: AMER MATHEMATICAL SOC
Fecha de publicación: 2016
Página de inicio: 2071
Página final: 2098
DOI:

10.1090/mcom3051

Notas: ISI