Effective proximity retrieval by ordering permutations

Chávez E.; Figueroa, K.; Navarro G.

Abstract

We introduce a new probabilistic proximity search algorithm for range and $K$-nearest neighbor ($K$-NN) searching in both coordinate and metric spaces. Although there exist solutions for these problems, they boil down to a linear scan when the space is intrinsically high-dimensional, as is the case in many pattern recognition tasks. This, for example, renders the $K$-NN approach to classification rather slow in large databases. Our novel idea is to predict closeness between elements according to how they order their distances towards a distinguished set of anchor objects. Each element in the space sorts the anchor objects from closest to farthest to it, and the similarity between orders turns out to be an excellent predictor of the closeness between the corresponding elements. We present extensive experiments comparing our method against state-of-the-art exact and approximate techniques, both in synthetic and real, metric and non-metric databases, measuring both CPU time and distance computations. The experiments demonstrate that our technique almost always improves upon the performance of alternative techniques, in some cases by a wide margin. © 2008 IEEE.

Más información

Título según WOS: Effective proximity retrieval by ordering permutations
Título según SCOPUS: Effective proximity retrieval by ordering permutations
Título de la Revista: IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
Volumen: 30
Número: 9
Editorial: IEEE COMPUTER SOC
Fecha de publicación: 2008
Página de inicio: 1647
Página final: 1658
Idioma: English
URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4378393
DOI:

10.1109/TPAMI.2007.70815

Notas: ISI, SCOPUS