Algebraic conditions for convergence of a quantum Markov semigroup to a steady state
Abstract
Let T be a uniformly continuous quantum Markov semigroup on B(h) with generator represented in a standard GKSL form L(x) = -1/2 ∑l (L*l x - 2L*l xLl + xLÏlLl) + i[H,x] and a faithful normal invariant state Ï. In this note we give new algebraic conditions for proving that T converges towards a steady state, possibly different from Ï. Indeed, we show that this happens whenever the commutator of {H, Ll, L*l|l ≥ 1} (i.e. its fixed point algebra) coincides with the commutator of {Ll, L*l, δH (L l), δH (L*l),..., δn H (Ll), δnH (L*l)|l ≥ 1} (where δH(X) = [H, X]) for some n < 1. As an application we discuss the convergence to the unique invariant state of a spin chain model. © 2008 World Scientific Publishing Company.
Más información
Título según WOS: | Algebraic conditions for convergence of a quantum Markov semigroup to a steady state |
Título según SCOPUS: | Algebraic conditions for convergence of a quantum Markov semigroup to a steady state |
Título de la Revista: | INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS |
Volumen: | 11 |
Número: | 3 |
Editorial: | WORLD SCIENTIFIC PUBL CO PTE LTD |
Fecha de publicación: | 2008 |
Página de inicio: | 467 |
Página final: | 474 |
Idioma: | English |
URL: | http://www.worldscientific.com/doi/abs/10.1142/S0219025708003142 |
DOI: |
10.1142/S0219025708003142 |
Notas: | ISI, SCOPUS |