Algebraic conditions for convergence of a quantum Markov semigroup to a steady state
Abstract
Let T be a uniformly continuous quantum Markov semigroup on B(h) with generator represented in a standard GKSL form L(x) = -1/2 ∑l (L*l x - 2L*l xLl + xLÏlLl) + i[H,x] and a faithful normal invariant state Ï. In this note we give new algebraic conditions for proving that T converges towards a steady state, possibly different from Ï. Indeed, we show that this happens whenever the commutator of {H, Ll, L*l|l ≥ 1} (i.e. its fixed point algebra) coincides with the commutator of {Ll, L*l, δH (L l), δH (L*l),..., δn H (Ll), δnH (L*l)|l ≥ 1} (where δH(X) = [H, X]) for some n < 1. As an application we discuss the convergence to the unique invariant state of a spin chain model. © 2008 World Scientific Publishing Company.
Más información
| Título según WOS: | Algebraic conditions for convergence of a quantum Markov semigroup to a steady state | 
| Título según SCOPUS: | Algebraic conditions for convergence of a quantum Markov semigroup to a steady state | 
| Título de la Revista: | INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS | 
| Volumen: | 11 | 
| Número: | 3 | 
| Editorial: | WORLD SCIENTIFIC PUBL CO PTE LTD | 
| Fecha de publicación: | 2008 | 
| Página de inicio: | 467 | 
| Página final: | 474 | 
| Idioma: | English | 
| URL: | http://www.worldscientific.com/doi/abs/10.1142/S0219025708003142 | 
| DOI: | 10.1142/S0219025708003142 | 
| Notas: | ISI, SCOPUS | 
 Portal del Investigador
						 Portal del Investigador