Critical points of the regular part of the harmonic Green function with Robin boundary condition
Abstract
In this paper we consider the Green function for the Laplacian in a smooth bounded domain Ω ⊂ R N with Robin boundary conditionfrac(∂ G λ, ∂ ν) + λ b (x) G λ = 0, on ∂ Ω, and its regular part S λ (x, y), where b > 0 is smooth. We show that in general, as λ → ∞, the Robin function R λ (x) = S λ (x, x) has at least 3 critical points. Moreover, in the case b ≡ const we prove that R λ has critical points near non-degenerate critical points of the mean curvature of the boundary, and when b ≢ const there are critical points of R λ near non-degenerate critical points of b. © 2008 Elsevier Inc. All rights reserved.
Más información
| Título según WOS: | Critical points of the regular part of the harmonic Green function with Robin boundary condition |
| Título según SCOPUS: | Critical points of the regular part of the harmonic Green function with Robin boundary condition |
| Título de la Revista: | JOURNAL OF FUNCTIONAL ANALYSIS |
| Volumen: | 255 |
| Número: | 5 |
| Editorial: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
| Fecha de publicación: | 2008 |
| Página de inicio: | 1057 |
| Página final: | 1101 |
| Idioma: | English |
| URL: | http://linkinghub.elsevier.com/retrieve/pii/S0022123608002279 |
| DOI: |
10.1016/j.jfa.2007.11.023 |
| Notas: | ISI, SCOPUS |