Asymptotics at infinity of solutions for p-Laplace equations in exterior domains

Avila, AI; Brock F.

Abstract

Let 1 < p < N, and u be a nonnegative solution of - Δp u = f (x, u) on RN {set minus} over(B1, -) where f behaves like | x |- l uq near | x | = ∞ and u = 0, for some constants q ≥ 0 and l ∈ R. We obtain asymptotic decay estimates for u. In particular, our results complete the 'sublinear case' q < p - 1. A related analysis is carried out for systems like - Δp u = f (x, v), - Δp v = g (x, u), where p = 2 corresponds to a Hamiltonian system. In this way we extend and improve some known results of Mitidieri and Pohozaev, Bidaut-Véron and Pohozaev, and other authors. Our proofs use tools such as Harnack inequality, the Maximum Principle, Liouville Theorems and blow-up arguments. © 2008.

Más información

Título según WOS: Asymptotics at infinity of solutions for p-Laplace equations in exterior domains
Título según SCOPUS: Asymptotics at infinity of solutions for p-Laplace equations in exterior domains
Título de la Revista: NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS
Volumen: 69
Número: 05-jun
Editorial: PERGAMON-ELSEVIER SCIENCE LTD
Fecha de publicación: 2008
Página de inicio: 1615
Página final: 1628
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0362546X07004609
DOI:

10.1016/j.na.2007.07.003

Notas: ISI, SCOPUS