A Posteriori Analysis for a Mixed FEM Discretization of the Linear Elasticity Spectral Problem
Abstract
In this paper we analyze a posteriori error estimates for a mixed formulation of the linear elasticity eigenvalue problem. A posteriori estimators for the nearly and perfectly compressible elasticity spectral problems are proposed. With a post-process argument, we are able to prove reliability and efficiency for the proposed estimators. The numerical method is based in Raviart-Thomas elements to approximate the pseudostress and piecewise polynomials for the displacement. We illustrate our results with numerical tests in two and three dimensions.
Más información
Título según WOS: | ID WOS:000843193500012 Not found in local WOS DB |
Título de la Revista: | JOURNAL OF SCIENTIFIC COMPUTING |
Volumen: | 93 |
Número: | 1 |
Editorial: | SPRINGER/PLENUM PUBLISHERS |
Fecha de publicación: | 2022 |
DOI: |
10.1007/s10915-022-01972-y |
Notas: | ISI |