Error Estimates for FEM Discretizations of the Navier–Stokes Equations with Dirac Measures
Abstract
We analyze, on two dimensional polygonal domains, classical low–order inf-sup stable finite element approximations of the stationary Navier–Stokes equations with singular sources. We operate under the assumptions that the continuous and discrete solutions are sufficiently small. We perform an a priori error analysis on convex domains. On Lipschitz, but not necessarily convex, polygonal domains, we design an a posteriori error estimator and prove its global reliability. We also explore efficiency estimates. We illustrate the theory with numerical tests.
Más información
| Título de la Revista: | JOURNAL OF SCIENTIFIC COMPUTING |
| Volumen: | 87 |
| Fecha de publicación: | 2021 |
| Página de inicio: | 1 |
| Página final: | 23 |
| Idioma: | English |