Fast and slow decay solutions for supercritical elliptic problems in exterior domains
Abstract
We consider the elliptic problem Δu + u p = 0, u > 0 in an exterior domain, Ω = â„N\D under zero Dirichlet and vanishing conditions, where D is smooth and bounded in â„N, N ≥ 3, and p is supercritical, namely p > N+2/N-2. We prove that this problem has infinitely many solutions with slow decay O(∥x∥ - 2/ p-1 at infinity. In addition, a solution with fast decay O(|x|2-N ) exists if p is close enough from above to the critical exponent. © 2007 Springer-Verlag.
Más información
| Título según WOS: | Fast and slow decay solutions for supercritical elliptic problems in exterior domains |
| Título según SCOPUS: | Fast and slow decay solutions for supercritical elliptic problems in exterior domains |
| Título de la Revista: | CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS |
| Volumen: | 32 |
| Número: | 4 |
| Editorial: | SPRINGER HEIDELBERG |
| Fecha de publicación: | 2008 |
| Página de inicio: | 453 |
| Página final: | 480 |
| Idioma: | English |
| URL: | http://link.springer.com/10.1007/s00526-007-0154-1 |
| DOI: |
10.1007/s00526-007-0154-1 |
| Notas: | ISI, SCOPUS |