Fast and slow decay solutions for supercritical elliptic problems in exterior domains
Abstract
We consider the elliptic problem Δu + u p = 0, u > 0 in an exterior domain, Ω = â„N\D under zero Dirichlet and vanishing conditions, where D is smooth and bounded in â„N, N ≥ 3, and p is supercritical, namely p > N+2/N-2. We prove that this problem has infinitely many solutions with slow decay O(∥x∥ - 2/ p-1 at infinity. In addition, a solution with fast decay O(|x|2-N ) exists if p is close enough from above to the critical exponent. © 2007 Springer-Verlag.
Más información
Título según WOS: | Fast and slow decay solutions for supercritical elliptic problems in exterior domains |
Título según SCOPUS: | Fast and slow decay solutions for supercritical elliptic problems in exterior domains |
Título de la Revista: | CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS |
Volumen: | 32 |
Número: | 4 |
Editorial: | SPRINGER HEIDELBERG |
Fecha de publicación: | 2008 |
Página de inicio: | 453 |
Página final: | 480 |
Idioma: | English |
URL: | http://link.springer.com/10.1007/s00526-007-0154-1 |
DOI: |
10.1007/s00526-007-0154-1 |
Notas: | ISI, SCOPUS |