On the dominated convergence theorem for the Kurzweil-Stieltjes integral

Gallegos, Claudio A.; Henriquez, Hernan R.

Abstract

This paper is concerned with a version of the Lebesgue dominated convergence theorem (DCT) which has been stated for the Kurzweil-Stieltjes integral of real functions. Our objective in this work is to analyze the extension of this result to include vector functions with values in Banach spaces. We establish that the mentioned convergence theorem for the Kurzweil-Stieltjes integral can be formulated in weaker versions for reflexive and separable Banach spaces, and spaces having the Schur property, nonetheless it is not verified in the general case.

Más información

Título según WOS: On the dominated convergence theorem for the Kurzweil-Stieltjes integral
Título de la Revista: MATHEMATISCHE NACHRICHTEN
Editorial: WILEY-V C H VERLAG GMBH
Fecha de publicación: 2023
DOI:

10.1002/mana.202200109

Notas: ISI