Photoswitching/back-switching assessment of biobased cellulose acetate/azobenzene handleable films under visible-light LED irradiation
Abstract
The light-induced processes performed by photofunctional polymer films are crucial aspects of developing in-tegrated energy storage devices properly. Herein, we report the preparation, characterization, and study of the optical properties of a series of biobased cellulose acetate/azobenzene (CA/Az1) handleable films at different compositions. The photoswitching/back-switching behavior of the samples was investigated using varied LED irradiation sources. Additionally, poly(ethylene glycol) (PEG) was deposited onto cellulose acetate/azobenzene films to study the back-switching process's effect and nature in the fabricated films. Interestingly, the melting enthalpies of PEG before and after being irradiated with blue LED light were 2.5 mJ and 0.8 mJ, respectively. Conveniently, FTIR and UV-visible spectroscopy, thermogravimetry (TGA), contact angle, differential scanning calorimetry (DSC), polarized light microscopy (PLM), and atomic force microscopy (AFM) were used for the characterization of the sample films. Complementarily, theoretical electronic calculations provided a consistent approach to the energetic change in the dihedral angles and non-covalent interaction for the trans and cis isomer in the presence of cellulose acetate monomer. The results of this study revealed that CA/Az1 films are viable photoactive materials displaying handleability attributes with potential uses in harvesting, converting, and storing light energy.
Más información
Título según WOS: | Photoswitching/back-switching assessment of biobased cellulose acetate/azobenzene handleable films under visible-light LED irradiation |
Título de la Revista: | INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES |
Volumen: | 242 |
Editorial: | Elsevier |
Fecha de publicación: | 2023 |
DOI: |
10.1016/j.ijbiomac.2023.124883 |
Notas: | ISI |