SELF-SUPERVISED LEARNING METHODS FOR REPRESENTATION LEARNING AND ANOMALY DETECTION IN TIME SERIES: APPLICATIONS TO ASTRONOMY AND ELECTROENCEPHALOGRAPHY

Estevez, Pablo A.; Perez C.A.

Más información

Fecha de publicación: 2022
Objetivos: The main objectives of this research proposal are to develop an information theoretic framework for self-supervised learning based methods for representation learning and anomaly detection in time-series, applied to astronomical light curves and electroencephalograms
Instrumento: FONDECYT
Año de Inicio/Término: 2022-2026
Financiamiento/Sponsor: CONICYT
Rol del Usuario: INVESTIGADOR(A) RESPONSABLE
DOI:

1220829