Design of an EEG analytical methodology for the analysis and interpretation of cerebral connectivity signals

Cordova, Felisa M.; Cifuentes, Hugo F.; Diaz, Hernan A.; Yanine, Fernando; Pereira, Robertino; Liu, Y; Shi, Y; Wang, Y; Ergu, D; Berg, D; Tien, J; Li, J; Tian, Y

Abstract

The objective of this study is to design an Electroencephalographic (EEG) analytic methodology that allows to develop a variety of analysis and interpretations of brain signals. The initial phase considers the acquisition and filtering of EEG signals, the division into bands in data ranges, and the storage of EEG signals in a cloud data base. Then, an analytical phase considering descriptive, predictive and prescriptive analysis is accomplished. A sequence of analytic intermediate processing steps is done in order to render a graphic visualization of significant correlations between pairs of EEG channels. Pearson correlation is utilized to detect synchronic connectivity through the brain areas. Time series in nearly instantaneous time lapses are treated by using Hilbert Huang Transform. An experimental design by submitting a set of students to an abbreviated version Raven visual test is made providing results in correlation maps of cerebral connectivity. (C) 2021 The Authors. Published by Elsevier B.V.

Más información

Título según WOS: Design of an EEG analytical methodology for the analysis and interpretation of cerebral connectivity signals
Título de la Revista: 12TH INTERNATIONAL CONFERENCE ON AMBIENT SYSTEMS, NETWORKS AND TECHNOLOGIES (ANT) / THE 4TH INTERNATIONAL CONFERENCE ON EMERGING DATA AND INDUSTRY 4.0 (EDI40) / AFFILIATED WORKSHOPS
Volumen: 199
Editorial: ELSEVIER SCIENCE BV
Fecha de publicación: 2022
Página de inicio: 1401
Página final: 1408
DOI:

10.1016/j.procs.2022.01.177

Notas: ISI