Comparative Study of the Removal Efficiency of Nalidixic Acid by Poly[(4-vinylbenzyl)trimethylammonium Chloride] and N-Alkylated Chitosan through the Ultrafiltration Technique and Its Approximation through Theoretical Calculations
Abstract
Emerging antibiotic contaminants in water is a global problem because bacterial strains resistant to these antibiotics arise, risking human health. This study describes the use of poly[(4-vinylbenzyl) trimethylammonium chloride] and N-alkylated chitosan, two cationic polymers with different natures and structures to remove nalidixic acid. Both contain ammonium salt as a functional group. One of them is a synthetic polymer, and the other is a modified artificial polymer. The removal of the antibiotic was investigated under various experimental conditions (pH, ionic strength, and antibiotic concentration) using the technique of liquid-phase polymer-based retention (LPR). In addition, a stochastic algorithm provided by Fukui's functions is used. It was shown that alkylated N-chitosan presents 65.0% removal at pH 7, while poly[(4-vinylbenzyl)trimethylammonium chloride] removes 75.0% at pH 9. The interaction mechanisms that predominate the removal processes are electrostatic interactions, pi;- pi; interactions, and hydrogen bonding. The polymers reached maximum retention capacities of 1605 mg g(-1) for poly[(4-vinylbenzyl) trimethylammonium chloride] and 561 mg g(-1) of antibiotic per gram for alkylated poly(N-chitosan). In conclusion, the presence of aromatic groups improves the capacity and polymer-antibiotic interactions.
Más información
Título según WOS: | Comparative Study of the Removal Efficiency of Nalidixic Acid by Poly[(4-vinylbenzyl)trimethylammonium Chloride] and N-Alkylated Chitosan through the Ultrafiltration Technique and Its Approximation through Theoretical Calculations |
Título de la Revista: | POLYMERS |
Volumen: | 15 |
Número: | 15 |
Editorial: | MDPI |
Fecha de publicación: | 2023 |
DOI: |
10.3390/polym15153185 |
Notas: | ISI |