Bayesian learning with Wasserstein barycenters

Backhoff-Veraguas, Julio; FONTBONA-TORRES, JOAQUIN; Rios, Gonzalo; TOBAR-HENRIQUEZ, FELIPE ARTURO

Abstract

We introduce and study a novel model-selection strategy for Bayesian learning, based on optimal transport, along with its associated predictive posterior law: The Wasserstein population barycenter of the posterior law over models. We first show how this estimator, termed Bayesian Wasserstein barycenter (BWB), arises naturally in a general, parameter-free Bayesian model-selection framework, when the considered Bayesian risk is the Wasserstein distance. Examples are given, illustrating how the BWB extends some classic parametric and non-parametric selection strategies. Furthermore, we also provide explicit conditions granting the existence and statistical consistency of the BWB, and discuss some of its general and specific properties, providing insights into its advantages compared to usual choices, such as the model average estimator. Finally, we illustrate how this estimator can be computed using the stochastic gradient descent (SGD) algorithm in Wasserstein space introduced in a companion paper, and provide a numerical example for experimental validation of the proposed method.

Más información

Título según WOS: Bayesian learning with Wasserstein barycenters*
Título según SCOPUS: ID SCOPUS_ID:85145434139 Not found in local SCOPUS DB
Título de la Revista: ESAIM-Probability and Statistics
Volumen: 26
Fecha de publicación: 2022
Página de inicio: 436
Página final: 472
DOI:

10.1051/PS/2022015

Notas: ISI, SCOPUS