Multiferroic Electroactive Polymer Blend/Ferrite Nanocomposite Flexible Films for Cooling Devices

Thandapani, Prabhakaran; Aepuru, Radhamanohar; Beron, Fanny; Viswanathan, Mangalaraja Ramalinga; Varaprasad, Kokkarachedu; Zabotto, Fabio Luis; Jimenez, Jose A.; Denardin, Juliano C.

Abstract

In recent days, the interest toward the development ofmulticaloricmaterials for cooling application is increasing, whereas multiferroicmaterials would be the suitable alternative to the conventional refrigerants.To explore them, the poly(methyl methacrylate)/poly(vinylidenefluoride-co-hexafluoropropylene) (PMMA/PVDF-HFP) blend and PMMA/PVDF-HFP/Zn0.5Cu0.5Fe2O4 flexible multiferroicnanocomposite films were fabricated by the solution casting method.The structural analyses prove that the strong interfacial interactionbetween the PMMA/PVDF-HFP blend and the Zn0.5Cu0.5Fe2O4 (ZCF) through hydroxyl (-OH) andcarbonyl group bonding with PVDF-HFP enhanced the thermal stabilityand suppressed the electroactive beta; phase from 67 to 62%. Experimentalresults show that 10 wt % of superparamagnetic ZCF nanoparticles witha particle size of 6.8 nm induced both the magnetocaloric and magnetoelectriceffects in a nonmagnetic PMMA/PVDF-HFP ferroelectric matrix at roomtemperature. A set of isothermal magnetization curves were recordedin the magnetic field strength of 0-40 kOe and a temperaturerange of 2-400 K. The maximum magnetic entropy changes ( UDelta;S (M)) of -0.69 J BULL;kg(-1) K-1 of ZCF nanoparticles and -0.094 J BULL;kg(-1) K-1 of PMMA/PVDF-HFP/ZCF nanocompositesshowed an interesting table-like flat variation in the temperaturerange of 100-400 K as a function of the magnetic field. Thesamples display a large temperature span with a relative cooling power of 293 and 40 J BULL;kg(-1) for ZCF and PMMA/PVDF-HFP/ZCF,respectively. The magnetoelectric effect of the PMMA/PVDF-HFP/ZCFcomposite was proved, but it generated only 1.42 mV/m BULL;Oe in theapplied field of 5 kOe. Hence, the entropy change of the present nanocompositewas only due to the magnetocaloric effect, where the magnetoelectriccross-coupling coefficient was negligible. The multicaloric effectcould be established if the nanocomposite showed a larger magnetoelectriccross-coupling in addition to the magnetocaloric effect. This approachprovides the research findings in functional multiferroic polymernanocomposites for miniaturized cooling devices.

Más información

Título según WOS: ID WOS:001030514100001 Not found in local WOS DB
Título de la Revista: ACS APPLIED POLYMER MATERIALS
Volumen: 5
Número: 8
Editorial: AMER CHEMICAL SOC
Fecha de publicación: 2023
Página de inicio: 5926
Página final: 5936
DOI:

10.1021/acsapm.3c00589

Notas: ISI