The finite intersection property for equilibrium problems

Abstract

The "finite intersection property" for bifunctions is introduced and its relationship with generalized monotonicity properties is studied. Some characterizations are considered involving the Minty equilibrium problem. Also, some results concerning existence of equilibria and quasi-equilibria are established recovering several results in the literature. Furthermore, we give an existence result for generalized Nash equilibrium problems and variational inequality problems.

Más información

Título según WOS: The finite intersection property for equilibrium problems
Título de la Revista: JOURNAL OF GLOBAL OPTIMIZATION
Volumen: 79
Número: 4
Editorial: Springer
Fecha de publicación: 2021
Página de inicio: 941
Página final: 957
DOI:

10.1007/S10898-020-00961-5

Notas: ISI