The finite intersection property for equilibrium problems
Abstract
The "finite intersection property" for bifunctions is introduced and its relationship with generalized monotonicity properties is studied. Some characterizations are considered involving the Minty equilibrium problem. Also, some results concerning existence of equilibria and quasi-equilibria are established recovering several results in the literature. Furthermore, we give an existence result for generalized Nash equilibrium problems and variational inequality problems.
Más información
| Título según WOS: | The finite intersection property for equilibrium problems |
| Título de la Revista: | JOURNAL OF GLOBAL OPTIMIZATION |
| Volumen: | 79 |
| Número: | 4 |
| Editorial: | Springer |
| Fecha de publicación: | 2021 |
| Página de inicio: | 941 |
| Página final: | 957 |
| DOI: |
10.1007/S10898-020-00961-5 |
| Notas: | ISI |