The sharp constant in the Hardy-Sobolev-Maz'ya inequality in the three dimensional upper half-space

Benguria, RD; Frank, RL; Loss M.

Abstract

It is shown that the sharp constant in the Hardy-Sobolev-Maz'ya inequality on the upper half space ℍ3 ⊂ ℝ3 is given by the Sobolev constant. This is achieved by a duality argument relating the problem to a Hardy-Littlewood-Sobolev type inequality whose sharp constant is determined as well.

Más información

Título según WOS: The sharp constant in the Hardy-Sobolev-Maz'ya inequality in the three dimensional upper half-space
Título según SCOPUS: The sharp constant in the Hardy-Sobolev-Maz'ya inequality in the three dimensional upper half-space
Título de la Revista: MATHEMATICAL RESEARCH LETTERS
Volumen: 15
Número: 4
Editorial: INT PRESS BOSTON, INC
Fecha de publicación: 2008
Página de inicio: 613
Página final: 622
Idioma: English
Notas: ISI, SCOPUS