The sharp constant in the Hardy-Sobolev-Maz'ya inequality in the three dimensional upper half-space
Abstract
It is shown that the sharp constant in the Hardy-Sobolev-Maz'ya inequality on the upper half space â„3 ⊂ â„3 is given by the Sobolev constant. This is achieved by a duality argument relating the problem to a Hardy-Littlewood-Sobolev type inequality whose sharp constant is determined as well.
Más información
Título según WOS: | The sharp constant in the Hardy-Sobolev-Maz'ya inequality in the three dimensional upper half-space |
Título según SCOPUS: | The sharp constant in the Hardy-Sobolev-Maz'ya inequality in the three dimensional upper half-space |
Título de la Revista: | MATHEMATICAL RESEARCH LETTERS |
Volumen: | 15 |
Número: | 4 |
Editorial: | INT PRESS BOSTON, INC |
Fecha de publicación: | 2008 |
Página de inicio: | 613 |
Página final: | 622 |
Idioma: | English |
Notas: | ISI, SCOPUS |