Exterior controllability properties for a fractional Moore-Gibson-Thompson equation
Abstract
The three concepts of exact, null and approximate controllabilities are analyzed from the exterior of the Moore-Gibson-Thompson equation associated with the fractional Laplace operator subject to the nonhomogeneous Dirichlet type exterior condition. Assuming that b > 0 and alpha - tau c(2)/b, we show that if 0 < s < 1 and Omega subset of R-N (N >= 1) is a bounded domain with a Lipschitz continuous boundary partial derivative Omega, then there is no control function g such that the following system
Más información
Título según WOS: | Exterior controllability properties for a fractional Moore-Gibson-Thompson equation |
Título según SCOPUS: | ID SCOPUS_ID:85132584286 Not found in local SCOPUS DB |
Título de la Revista: | Fractional Calculus and Applied Analysis |
Volumen: | 25 |
Editorial: | WALTER DE GRUYTER GMBH |
Fecha de publicación: | 2022 |
Página de inicio: | 887 |
Página final: | 923 |
DOI: |
10.1007/S13540-022-00018-2 |
Notas: | ISI, SCOPUS |