Exterior controllability properties for a fractional Moore-Gibson-Thompson equation
Abstract
The three concepts of exact, null and approximate controllabilities are analyzed from the exterior of the Moore-Gibson-Thompson equation associated with the fractional Laplace operator subject to the nonhomogeneous Dirichlet type exterior condition. Assuming that b > 0 and alpha - tau c(2)/b, we show that if 0 < s < 1 and Omega subset of R-N (N >= 1) is a bounded domain with a Lipschitz continuous boundary partial derivative Omega, then there is no control function g such that the following system {tau u(ttt )+ alpha u(tt) + c(2)(-Delta)(s) u + b(-Delta)(s) u(t) = 0 in Omega x (0, T), u = g chi O in (R-NOmega) x (0, T), u(., 0) = u(0), u(t) (., 0) = u(1), u(tt)(., 0) = u(2) in Omega, is exactly or null controllable in time T > 0. However, we prove that for 0 < s < 1, the system is approximately controllable for every g is an element of H-1 ((0, T); L-2(O)), where O subset of R-N(Omega) over bar is an arbitrary non-empty open set.
Más información
| Título según WOS: | Exterior controllability properties for a fractional Moore-Gibson-Thompson equation |
| Título según SCOPUS: | ID SCOPUS_ID:85132584286 Not found in local SCOPUS DB |
| Volumen: | 25 |
| Número: | 3 |
| Fecha de publicación: | 2022 |
| Página de inicio: | 887 |
| Página final: | 923 |
| Idioma: | English |
| DOI: |
10.1007/s13540-022-00018-2 |
| Notas: | ISI, SCOPUS |