Existence of the zero-temperature limit of equilibrium states on topologically transitive countable Markov shifts
Abstract
Consider a topologically transitive countable Markov shift Sigma and a summable locally constant potential f with finite Gurevich pressure and Var1(phi) < infinity. We prove the existence of the limit lim(t ->infinity) mu(t) in the weak mu(t) topology, where mu(t) is the unique equilibrium state associated to the potential t(phi). In addition, we present examples where the limit at zero temperature exists for potentials satisfying more general conditions.
Más información
Título según WOS: | Existence of the zero-temperature limit of equilibrium states on topologically transitive countable Markov shifts |
Título según SCOPUS: | ID SCOPUS_ID:85171166361 Not found in local SCOPUS DB |
Título de la Revista: | ERGODIC THEORY AND DYNAMICAL SYSTEMS |
Editorial: | CAMBRIDGE UNIV PRESS |
Fecha de publicación: | 2022 |
DOI: |
10.1017/ETDS.2022.65 |
Notas: | ISI, SCOPUS |