Prediction of student attrition risk using machine learning

Barramuno, Mauricio; Meza-Narvaez, Claudia; Galvez-Garcia, German

Abstract

Purpose The prediction of student attrition is critical to facilitate retention mechanisms. This study aims to focus on implementing a method to predict student attrition in the upper years of a physiotherapy program. Design/methodology/approach Machine learning is a computer tool that can recognize patterns and generate predictive models. Using a quantitative research methodology, a database of 336 university students in their upper-year courses was accessed. The participant's data were collected from the Financial Academic Management and Administration System and a platform of Universidad Autonoma de Chile. Five quantitative and 11 qualitative variables were chosen, associated with university student attrition. With this database, 23 classifiers were tested based on supervised machine learning. Findings About 23.58% of males and 17.39% of females were among the attrition student group. The mean accuracy of the classifiers increased based on the number of variables used for the training. The best accuracy level was obtained using the "Subspace KNN" algorithm (86.3%). The classifier "RUSboosted trees" yielded the lowest number of false negatives and the higher sensitivity of the algorithms used (78%) as well as a specificity of 86%. Practical implications This predictive method identifies attrition students in the university program and could be used to improve student retention in higher grades. Originality/value The study has developed a novel predictive model of student attrition from upper-year courses, useful for unbalanced databases with a lower number of attrition students.

Más información

Título según WOS: Prediction of student attrition risk using machine learning
Título según SCOPUS: ID SCOPUS_ID:85106305417 Not found in local SCOPUS DB
Título de la Revista: Journal of Applied Research in Higher Education
Volumen: 14
Fecha de publicación: 2022
Página de inicio: 974
Página final: 986
DOI:

10.1108/JARHE-02-2021-0073

Notas: ISI, SCOPUS