A POSTERIORI ERROR ESTIMATES FOR A DISTRIBUTED OPTIMAL CONTROL PROBLEM OF THE STATIONARY NAVIER-STOKES EQUATIONS
Abstract
In two and three dimensional Lipschitz, but not necessarily convex, polytopal domains, we propose and analyze a posteriori error estimators for an optimal control problem involving the stationary Navier-Stokes equations; control constraints are also considered. We devise two strategies of discretization: a semidiscrete scheme where the control variable is not discretized and a fully discrete scheme where the control is discretized. For each solution technique, we design an a posteriori error estimator that can be decomposed as the sum of contributions related to the discretization of the state and adjoint equations and, additionally, the discretization of the control variable for when the fully discrete scheme is considered. We prove that the devised error estimators are reliable and also explore local efficiency estimates. Numerical experiments reveal a competitive performance of adaptive loops based on the devised a posteriori error estimators.
Más información
Título según WOS: | A POSTERIORI ERROR ESTIMATES FOR A DISTRIBUTED OPTIMAL CONTROL PROBLEM OF THE STATIONARY NAVIER-STOKES EQUATIONS |
Título según SCOPUS: | ID SCOPUS_ID:85114097503 Not found in local SCOPUS DB |
Título de la Revista: | SIAM JOURNAL ON CONTROL AND OPTIMIZATION |
Volumen: | 59 |
Editorial: | SIAM PUBLICATIONS |
Fecha de publicación: | 2021 |
Página de inicio: | 2898 |
Página final: | 2923 |
DOI: |
10.1137/20M1329792 |
Notas: | ISI, SCOPUS |