<i>A posteriori</i> error estimates for semilinear optimal control problems

Allendes, Alejandro; Fuica, Francisco; OTAROLA-PASTEN, ENRIQUE HOMERO; Quero, Daniel

Abstract

In two and three dimensional Lipschitz, but not necessarily convex, polytopal domains, we devise and analyze a reliable and efficient a posteriori error estimator for a semilinear optimal control problem; control constraints are also considered. We consider a fully discrete scheme that discretizes the state and adjoint equations with piecewise linear functions and the control variable with piecewise constant functions. The devised error estimator can be decomposed as the sum of three contributions which are associated to the discretization of the state and adjoint equations and the control variable. We extend our results to a scheme that approximates the control variable with piecewise linear functions and also to a scheme that approximates the solution to a nondifferentiable optimal control problem. We illustrate the theory with two and three-dimensional numerical examples.

Más información

Título según WOS: A posteriori error estimates for semilinear optimal control problems
Título según SCOPUS: ID SCOPUS_ID:85117960075 Not found in local SCOPUS DB
Volumen: 55
Fecha de publicación: 2021
Página de inicio: 2293
Página final: 2322
DOI:

10.1051/M2AN/2021033

Notas: ISI, SCOPUS