An Optimal Control Problem for the Navier-Stokes Equations with Point Sources

Fuica, Francisco; LEPE-ARAYA, FELIPE ANDRES; OTAROLA-PASTEN, ENRIQUE HOMERO; Quero, Daniel

Abstract

We analyze, in two dimensions, an optimal control problem for the Navier-Stokes equations where the control variable corresponds to the amplitude of forces modeled as point sources; control constraints are also considered. This particular setting leads to solutions to the state equation exhibiting reduced regularity properties. We operate under the framework of Muckenhoupt weights, Muckenhoupt-weighted Sobolev spaces, and the corresponding weighted norm inequalities and derive the existence of optimal solutions and first- and, necessary and sufficient, second-order optimality conditions.

Más información

Título según WOS: An Optimal Control Problem for the Navier-Stokes Equations with Point Sources
Título según SCOPUS: ID SCOPUS_ID:85145316662 Not found in local SCOPUS DB
Título de la Revista: JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
Volumen: 196
Editorial: SPRINGER/PLENUM PUBLISHERS
Fecha de publicación: 2023
Página de inicio: 590
Página final: 616
DOI:

10.1007/S10957-022-02148-2

Notas: ISI, SCOPUS