An Optimal Control Problem for the Navier-Stokes Equations with Point Sources
Abstract
We analyze, in two dimensions, an optimal control problem for the Navier-Stokes equations where the control variable corresponds to the amplitude of forces modeled as point sources; control constraints are also considered. This particular setting leads to solutions to the state equation exhibiting reduced regularity properties. We operate under the framework of Muckenhoupt weights, Muckenhoupt-weighted Sobolev spaces, and the corresponding weighted norm inequalities and derive the existence of optimal solutions and first- and, necessary and sufficient, second-order optimality conditions.
Más información
| Título según WOS: | An Optimal Control Problem for the Navier-Stokes Equations with Point Sources |
| Título según SCOPUS: | ID SCOPUS_ID:85145316662 Not found in local SCOPUS DB |
| Título de la Revista: | JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS |
| Volumen: | 196 |
| Editorial: | SPRINGER/PLENUM PUBLISHERS |
| Fecha de publicación: | 2023 |
| Página de inicio: | 590 |
| Página final: | 616 |
| DOI: |
10.1007/S10957-022-02148-2 |
| Notas: | ISI, SCOPUS |