Non-technical loss detection using data mining algorithms

Quinde, Steven; Rengifo, Johnny; Vaca-Urbano, Fernando

Keywords: Markov , data mining , non-technical loss , AMI , smart meter

Abstract

Abstract: The non-technical losses are an important problem for the electric networks in the Region. However, its detection is possible using data mining. This work presents the implementation of clustering algorithms to detect non-technical losses using demand daily curves obtained from Advanced Metering Instruments (AMI). Three different clustering algorithms are compared, and their ability to identify outliers profiles is discussed. The study used synthetic data created with the Gaussian Hidden Markov Model adjusted with a common residential demand pattern from Guayaquil residential users. Results evidence the detection of 68% of the non-technical losses.

Más información

Editorial: IEEE
Fecha de publicación: 2021
Año de Inicio/Término: 15-17 September 2021
Página de inicio: 1
Página final: 5
Idioma: Inglés
URL: https://ieeexplore.ieee.org/abstract/document/9543024
DOI:

10.1109/ISGTLatinAmerica52371.2021.9543024

Notas: SCOPUS