Thermoacoustic tomography for an integro-differential wave equation modeling attenuation

Acosta, Sebastian; Palacios, Benjamin

Abstract

In this article we study the inverse problem of thermoacoustic tomography (TAT) on a medium with attenuation represented by a time-convolution (or memory) term, and whose consideration is motivated by the modeling of ultrasound waves in heterogeneous tissue via fractional derivatives with spatially dependent parameters. Under the assumption of being able to measure data on the whole boundary, we prove uniqueness and stability, and propose a convergent reconstruction method for a class of smooth variable sound speeds. By a suitable modification of the time reversal technique, we obtain a Neumann series reconstruction formula. (c) 2017 Elsevier Inc. All rights reserved.

Más información

Título según WOS: ID WOS:000417003900013 Not found in local WOS DB
Título de la Revista: JOURNAL OF DIFFERENTIAL EQUATIONS
Volumen: 264
Número: 3
Editorial: ACADEMIC PRESS INC ELSEVIER SCIENCE
Fecha de publicación: 2018
Página de inicio: 1984
Página final: 2010
DOI:

10.1016/j.jde.2017.10.012

Notas: ISI