Modulation Scheme Analysis for High-Efficiency Three-Phase Buck-Type Rectifier Considering Different Device Combinations

Guo, Ben; Wang, Fei (Fred); Burgos, Rolando; Aeloiza, Eddy

Abstract

The three-phase buck-type rectifier features a stepdown ac-dc conversion function, smaller filter size, inrush current limiting capability, and potential for high efficiency, where its switching loss is dependent on the modulation scheme and the specific semiconductors used. In this paper, three different device combinations are compared through experiments on their switching characteristics for the buck rectifier application. It is shown that the switching performance of two series-connected devices becomes worse than a single device due to the superposition of the nonideal semiconductor characteristics. Moreover, the switching loss in the commutation between two switches is usually higher than the one in the commutation between a switch and the freewheeling diode. Taking into consideration both types of commutations, the switching loss of the buck rectifier is then modeled and the analytical equations are derived for four space vector modulation schemes. According to the analysis, each modulation scheme has its own field for high-efficiency application. The most advantageous modulation scheme is identified in this paper for each of the device combinations investigated.

Más información

Título según WOS: ID WOS:000353130800013 Not found in local WOS DB
Título de la Revista: IEEE TRANSACTIONS ON POWER ELECTRONICS
Volumen: 30
Número: 9
Editorial: IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Fecha de publicación: 2015
Página de inicio: 4750
Página final: 4761
DOI:

10.1109/TPEL.2014.2364582

Notas: ISI