Finite-rank Bratteli-Vershik diagrams are expansive
Abstract
Abstract The representation of Cantor minimal systems by Bratteli-Vershik diagrams has been extensively used to study particular aspects of their dynamics. A main role has been played by the symbolic factors induced by the way vertices of a fixed level of the diagram are visited by the dynamics. The main result of this paper states that Cantor minimal systems that can be represented by Bratteli-Vershik diagrams with a uniformly bounded number of vertices at each level (called finite-rank systems) are either expansive or topologically conjugate to an odometer. More precisely, when expansive, they are topologically conjugate to one of their symbolic factors. © 2008 Cambridge University Press.
Más información
Título según WOS: | Finite-rank Bratteli-Vershik diagrams are expansive |
Título según SCOPUS: | Finite-rank Bratteli-Vershik diagrams are expansive |
Título de la Revista: | ERGODIC THEORY AND DYNAMICAL SYSTEMS |
Volumen: | 28 |
Número: | 3 |
Editorial: | CAMBRIDGE UNIV PRESS |
Fecha de publicación: | 2008 |
Página de inicio: | 739 |
Página final: | 747 |
Idioma: | English |
URL: | http://www.journals.cambridge.org/abstract_S0143385707000673 |
DOI: |
10.1017/S0143385707000673 |
Notas: | ISI, SCOPUS |