Finite-rank Bratteli-Vershik diagrams are expansive

Downarowicz T; Maass A.

Abstract

Abstract The representation of Cantor minimal systems by Bratteli-Vershik diagrams has been extensively used to study particular aspects of their dynamics. A main role has been played by the symbolic factors induced by the way vertices of a fixed level of the diagram are visited by the dynamics. The main result of this paper states that Cantor minimal systems that can be represented by Bratteli-Vershik diagrams with a uniformly bounded number of vertices at each level (called finite-rank systems) are either expansive or topologically conjugate to an odometer. More precisely, when expansive, they are topologically conjugate to one of their symbolic factors. © 2008 Cambridge University Press.

Más información

Título según WOS: Finite-rank Bratteli-Vershik diagrams are expansive
Título según SCOPUS: Finite-rank Bratteli-Vershik diagrams are expansive
Título de la Revista: ERGODIC THEORY AND DYNAMICAL SYSTEMS
Volumen: 28
Número: 3
Editorial: CAMBRIDGE UNIV PRESS
Fecha de publicación: 2008
Página de inicio: 739
Página final: 747
Idioma: English
URL: http://www.journals.cambridge.org/abstract_S0143385707000673
DOI:

10.1017/S0143385707000673

Notas: ISI, SCOPUS