Organic Fertilization in Traditional Mediterranean Grapevine Orchards Mediates Changes in Soil Microbial Community Structure and Enhances Soil Fertility

Garcia-Orenes, Fuensanta; Roldan, Antonio; Morugan-Coronado, Alicia; Linares, Carlos; Cerda, Artemi; Caravaca, Fuensanta

Abstract

Soil microbial populations and their functions related to nutrient cycling contribute substantially to the regulation of soil fertility and the sustainability of agroecosystems. A field experiment was performed to assess the medium-term effect of a mineral fertilizer and two organic fertilization systems with different nitrogen sources on the soil microbial community biomass, structure, and composition (phospholipid fatty acids, pattern, and abundance), microbial activity (basal respiration, dehydrogenase, protease, urease, -glucosidase, and total amount of phosphomonoesterase activities), and physical (aggregate stability) and chemical (total organic C, total N, available P and water-soluble carbohydrates) properties in a vineyard under semiarid Mediterranean conditions after a period of 10years. The three fertilization systems assayed were as follows: inorganic fertilization, addition of grapevine pruning with sheep manure (OPM), and addition of grapevine pruning with a legume cover crop (OPL). Both treatments, OPM and OPL, produced higher contents of total organic carbon, total N, available P, water-soluble carbohydrates, and stable aggregates. The organic fertilization systems increased microbial biomass, shifted the structure and composition of the soil microbial community, and stimulated microbial activity, when compared with inorganic fertilization. The abundances of fungi and G+ bacteria were increased by treatments OPM and OPL, without significant differences between them. Organic and inorganic fertilization produced similar grapevine yields. The ability of the organic fertilization systems for promoting the sustainability and soil biological and chemical fertility of an agroecosystem under semiarid conditions was dependent of the organic N source. Copyright (c) 2016 John Wiley & Sons, Ltd.

Más información

Título según WOS: ID WOS:000380964300008 Not found in local WOS DB
Título de la Revista: LAND DEGRADATION & DEVELOPMENT
Volumen: 27
Número: 6
Editorial: Wiley
Fecha de publicación: 2016
Página de inicio: 1622
Página final: 1628
DOI:

10.1002/ldr.2496

Notas: ISI