Lyapunov functions and convergence to steady state for differential equations of fractional order

Vergara V.; Zacher R.

Abstract

We study the asymptotic behaviour, as t → ∞, of bounded solutions to certain integro-differential equations in finite dimensions which include differential equations of fractional order between 0 and 2. We derive appropriate Lyapunov functions for these equations and prove that any global bounded solution converges to a steady state of a related equation, if the nonlinear potential E occurring in the equation satisfies the Łojasiewicz inequality. © 2007 Springer-Verlag.

Más información

Título según WOS: Lyapunov functions and convergence to steady state for differential equations of fractional order
Título según SCOPUS: Lyapunov functions and convergence to steady state for differential equations of fractional order
Título de la Revista: MATHEMATISCHE ZEITSCHRIFT
Volumen: 259
Número: 2
Editorial: SPRINGER HEIDELBERG
Fecha de publicación: 2008
Página de inicio: 287
Página final: 309
Idioma: English
URL: http://link.springer.com/10.1007/s00209-007-0225-1
DOI:

10.1007/s00209-007-0225-1

Notas: ISI, SCOPUS