Lyapunov functions and convergence to steady state for differential equations of fractional order
Abstract
We study the asymptotic behaviour, as t → ∞, of bounded solutions to certain integro-differential equations in finite dimensions which include differential equations of fractional order between 0 and 2. We derive appropriate Lyapunov functions for these equations and prove that any global bounded solution converges to a steady state of a related equation, if the nonlinear potential E occurring in the equation satisfies the Åojasiewicz inequality. © 2007 Springer-Verlag.
Más información
Título según WOS: | Lyapunov functions and convergence to steady state for differential equations of fractional order |
Título según SCOPUS: | Lyapunov functions and convergence to steady state for differential equations of fractional order |
Título de la Revista: | MATHEMATISCHE ZEITSCHRIFT |
Volumen: | 259 |
Número: | 2 |
Editorial: | SPRINGER HEIDELBERG |
Fecha de publicación: | 2008 |
Página de inicio: | 287 |
Página final: | 309 |
Idioma: | English |
URL: | http://link.springer.com/10.1007/s00209-007-0225-1 |
DOI: |
10.1007/s00209-007-0225-1 |
Notas: | ISI, SCOPUS |