Self-organization in the one-dimensional Landau-Lifshitz-Gilbert-Slonczewski equation with non-uniform anisotropy fields

Garcia-Nustes, Monica A.; Humire, Fernando R.; Leon, Alejandro O.

Abstract

--- - In magnetic films driven by spin-polarized currents, the perpendicular-to-plane anisotropy is equivalent to breaking the time translation symmetry, i.e., to a parametric pumping. In this work, we numerically study those current-driven magnets via the Landau-Lifshitz- Gilbert-Slonczewski equation in one spatial dimension. We consider a space-dependent anisotropy field in the parametric-like regime. The anisotropy profile is antisymmetric to the middle point of the system. We find several dissipative states and dynamical behav-ior and focus on localized patterns that undergo oscillatory and phase instabilities. Using numerical simulations, we characterize the localized states' bifurcations and present the corresponding diagram of phases. - (c) 2020 Elsevier B.V. All rights reserved.

Más información

Título según WOS: Self-organization in the one-dimensional Landau-Lifshitz-Gilbert-Slonczewski equation with non-uniform anisotropy fields
Título de la Revista: COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION
Volumen: 96
Editorial: Elsevier
Fecha de publicación: 2021
DOI:

10.1016/j.cnsns.2020.105674

Notas: ISI