Self-organization in the one-dimensional Landau-Lifshitz-Gilbert-Slonczewski equation with non-uniform anisotropy fields

Abstract

In magnetic films driven by spin-polarized currents, the perpendicular-to-plane anisotropy is equivalent to breaking the time translation symmetry, i.e., to a parametric pumping. In this work, we numerically study those current-driven magnets via the Landau-Lifshitz- Gilbert-Slonczewski equation in one spatial dimension. We consider a space-dependent anisotropy field in the parametric-like regime. The anisotropy profile is antisymmetric to the middle point of the system. We find several dissipative states and dynamical behav-ior and focus on localized patterns that undergo oscillatory and phase instabilities. Using numerical simulations, we characterize the localized states' bifurcations and present the corresponding diagram of phases.

Más información

Título según WOS: Self-organization in the one-dimensional Landau-Lifshitz-Gilbert-Slonczewski equation with non-uniform anisotropy fields
Título de la Revista: COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION
Volumen: 96
Editorial: Elsevier
Fecha de publicación: 2021
DOI:

10.1016/J.CNSNS.2020.105674

Notas: ISI