Matrix-valued isotropic covariance functions with local extrema

Alegria, Alfredo; Emery, Xavier

Abstract

Multivariate random fields are commonly used in spatial statistics and natural science to model coregionalized variables. In this context, the matrix-valued covariance function plays a central role in capturing their spatial continuity and interdependence. This study aims to contribute to the literature on covariance modeling by proposing new parametric families of isotropic matrix-valued functions exhibiting non-monotonic behaviors, namely hole effects and cross-dimples. The benefit of the proposed models is shown on a bivariate data set consisting of concentrations of airborne particulate matter.

Más información

Título según WOS: Matrix-valued isotropic covariance functions with local extrema
Título de la Revista: JOURNAL OF MULTIVARIATE ANALYSIS
Volumen: 200
Editorial: ELSEVIER INC
Fecha de publicación: 2024
DOI:

10.1016/j.jmva.2023.105250

Notas: ISI