Matrix-valued isotropic covariance functions with local extrema

Emery, Xavier

Abstract

Multivariate random fields are commonly used in spatial statistics and natural science to model coregionalized variables. In this context, the matrix-valued covariance function plays a central role in capturing their spatial continuity and interdependence. This study aims to contribute to the literature on covariance modeling by proposing new parametric families of isotropic matrix-valued functions exhibiting non-monotonic behaviors, namely hole effects and cross-dimples. The benefit of the proposed models is shown on a bivariate data set consisting of concentrations of airborne particulate matter.

Más información

Título según WOS: Matrix-valued isotropic covariance functions with local extrema
Título de la Revista: JOURNAL OF MULTIVARIATE ANALYSIS
Volumen: 200
Editorial: ELSEVIER INC
Fecha de publicación: 2024
DOI:

10.1016/j.jmva.2023.105250

Notas: ISI