Matrix-valued isotropic covariance functions with local extrema
Abstract
Multivariate random fields are commonly used in spatial statistics and natural science to model coregionalized variables. In this context, the matrix-valued covariance function plays a central role in capturing their spatial continuity and interdependence. This study aims to contribute to the literature on covariance modeling by proposing new parametric families of isotropic matrix-valued functions exhibiting non-monotonic behaviors, namely hole effects and cross-dimples. The benefit of the proposed models is shown on a bivariate data set consisting of concentrations of airborne particulate matter.
Más información
Título según WOS: | Matrix-valued isotropic covariance functions with local extrema |
Título de la Revista: | JOURNAL OF MULTIVARIATE ANALYSIS |
Volumen: | 200 |
Editorial: | ELSEVIER INC |
Fecha de publicación: | 2024 |
DOI: |
10.1016/j.jmva.2023.105250 |
Notas: | ISI |