Copula-based measures of dependence structure in assets returns

Fernández V.

Abstract

Copula modeling has become an increasingly popular tool in finance to model assets returns dependency. In essence, copulas enable us to extract the dependence structure from the joint distribution function of a set of random variables and, at the same time, to isolate such dependence structure from the univariate marginal behavior. In this study, based on US stock data, we illustrate how tail-dependency tests may be misleading as a tool to select a copula that closely mimics the dependency structure of the data. This problem becomes more severe when the data is scaled by conditional volatility and/or filtered out for serial correlation. The discussion is complemented, under more general settings, with Monte Carlo simulations and portfolio management implications. © 2008 Elsevier Ltd. All rights reserved.

Más información

Título según WOS: Copula-based measures of dependence structure in assets returns
Título según SCOPUS: Copula-based measures of dependence structure in assets returns
Título de la Revista: PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS
Volumen: 387
Número: 14
Editorial: ELSEVIER SCIENCE BV
Fecha de publicación: 2008
Página de inicio: 3615
Página final: 3628
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0378437108002410
DOI:

10.1016/j.physa.2008.02.055

Notas: ISI, SCOPUS