Adaptive regression with Brownian path covariate
Abstract
This paper deals with estimation with functional covariates. More precisely, we aim at estimating the regression function m of a continuous outcome Y against a standard Wiener coprocess W. Following Cadre and Truquet (ESAIM Probab. Stat. 19 (2015) 251-267) and Cadre et al. (ESAIM Probab. Stat. 21 (2017) 138-158) the Wiener-Ito decomposition of m(W) is used to construct a family of estimators. The minimax rate of convergence over specific smoothness classes is obtained. A data-driven selection procedure is defined following the ideas developed by Goldenshluger and Lepski (Ann. Statist. 39 (2011) 1608-1632). An oracle-type inequality is obtained which leads to adaptive results.
Más información
Título según WOS: | Adaptive regression with Brownian path covariate |
Título de la Revista: | ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES |
Volumen: | 57 |
Número: | 3 |
Editorial: | INST MATHEMATICAL STATISTICS |
Fecha de publicación: | 2021 |
Página de inicio: | 1495 |
Página final: | 1520 |
DOI: |
10.1214/20-AIHP1128 |
Notas: | ISI |