Adaptive regression with Brownian path covariate

Bertin, Karine; Klutchnikoff, Nicolas

Abstract

This paper deals with estimation with functional covariates. More precisely, we aim at estimating the regression function m of a continuous outcome Y against a standard Wiener coprocess W. Following Cadre and Truquet (ESAIM Probab. Stat. 19 (2015) 251-267) and Cadre et al. (ESAIM Probab. Stat. 21 (2017) 138-158) the Wiener-Ito decomposition of m(W) is used to construct a family of estimators. The minimax rate of convergence over specific smoothness classes is obtained. A data-driven selection procedure is defined following the ideas developed by Goldenshluger and Lepski (Ann. Statist. 39 (2011) 1608-1632). An oracle-type inequality is obtained which leads to adaptive results.

Más información

Título según WOS: Adaptive regression with Brownian path covariate
Título de la Revista: ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES
Volumen: 57
Número: 3
Editorial: INST MATHEMATICAL STATISTICS
Fecha de publicación: 2021
Página de inicio: 1495
Página final: 1520
DOI:

10.1214/20-AIHP1128

Notas: ISI