Minimax properties of Dirichlet kernel density estimators
Abstract
This paper considers the asymptotic behavior in ?-Hölder spaces, and under Lp losses, of a Dirichlet kernel density estimator proposed by Aitchison and Lauder (1985) for the analysis of compositional data. In recent work, Ouimet and Tolosana-Delgado (2022) established the uniform strong consistency and asymptotic normality of this estimator. As a complement, it is shown here that the AitchisonLauder estimator can achieve the minimax rate asymptotically for a suitable choice of bandwidth whenever (p,?)?[1,3)×(0,2] or (p,?)?A
Más información
| Título según WOS: | Minimax properties of Dirichlet kernel density estimators |
| Título según SCOPUS: | Minimax properties of Dirichlet kernel density estimators |
| Título de la Revista: | Journal of Multivariate Analysis |
| Volumen: | 195 |
| Editorial: | ACADEMIC PRESS INC |
| Fecha de publicación: | 2023 |
| Idioma: | English |
| DOI: |
10.1016/j.jmva.2023.105158 |
| Notas: | ISI, SCOPUS |