Minimax properties of Dirichlet kernel density estimators

Genest, Christian; Klutchnikoff, Nicolas; Ouimet, Frederic

Abstract

This paper considers the asymptotic behavior in ?-Hölder spaces, and under Lp losses, of a Dirichlet kernel density estimator proposed by Aitchison and Lauder (1985) for the analysis of compositional data. In recent work, Ouimet and Tolosana-Delgado (2022) established the uniform strong consistency and asymptotic normality of this estimator. As a complement, it is shown here that the Aitchison–Lauder estimator can achieve the minimax rate asymptotically for a suitable choice of bandwidth whenever (p,?)?[1,3)×(0,2] or (p,?)?Ad, where Ad is a specific subset of [3,4)×(0,2] that depends on the dimension d of the Dirichlet kernel. It is also shown that this estimator cannot be minimax when either p?[4,?) or ??(2,?). These results extend to the multivariate case, and also rectify in a minor way, earlier findings of Bertin and Klutchnikoff (2011) concerning the minimax properties of Beta kernel estimators. © 2023 The Author(s)

Más información

Título según WOS: Minimax properties of Dirichlet kernel density estimators
Título según SCOPUS: Minimax properties of Dirichlet kernel density estimators
Título de la Revista: Journal of Multivariate Analysis
Volumen: 195
Editorial: ACADEMIC PRESS INC
Fecha de publicación: 2023
Idioma: English
DOI:

10.1016/j.jmva.2023.105158

Notas: ISI, SCOPUS