Stability of equilibrium solutions of Hamiltonian systems under the presence of a single resonance in the non-diagonalizable case
Abstract
The problem of knowing the stability of one equilibrium solution of an analytic autonomous Hamiltonian system in a neighborhood of the equilibrium point in the case where all eigenvalues are pure imaginary and the matrix of the linearized system is non-diagonalizable is considered. We give information about the stability of the equilibrium solution of Hamiltonian systems with two degrees of freedom in the critical case. We make a partial generalization of the results to Hamiltonian systems with n degrees of freedom, in particular, this generalization includes those in [1]. © MAIK Nauka 2008.
Más información
Título según WOS: | Stability of equilibrium solutions of Hamiltonian systems under the presence of a single resonance in the non-diagonalizable case |
Título según SCOPUS: | Stability of equilibrium solutions of Hamiltonian systems under the presence of a single resonance in the non-diagonalizable case |
Título de la Revista: | REGULAR & CHAOTIC DYNAMICS |
Volumen: | 13 |
Número: | 3 |
Editorial: | PLEIADES PUBLISHING INC |
Fecha de publicación: | 2008 |
Página de inicio: | 166 |
Página final: | 177 |
Idioma: | English |
URL: | http://link.springer.com/10.1134/S1560354708030039 |
DOI: |
10.1134/S1560354708030039 |
Notas: | ISI, SCOPUS |