Clutter Suppression via Hankel Rank Reduction for DFrFT-Based Vibrometry Applied to SAR

Perez, Francisco; Santhanam, Balu; Dunkel, Ralf; Hayat, Majeed M.

Abstract

Hankel rank reduction (HRR) is a method that, by prearranging the data in a Hankel matrix and performing rank reduction via singular value decomposition, suppresses the noise of a time-history vector comprised of the superposition of a finite number of sinusoids. In this letter, the HRR method is studied for performing clutter suppression in synthetic aperture radar (SAR)-based vibrometry. Specifically, three different applications of the HRR method are presented. First, resembling the SAR slow-time signal model, the HRR method is utilized for separating a chirp signal immersed in a sinusoidal clutter. Second, using simulated airborne SAR data with 10 dB of signal-to-clutter ratio, the HRR method is applied to perform target isolation and to improve the results of an SAR-based vibration estimation algorithm. Finally, the vibrometry approach combined with the HRR method is validated using actual airborne SAR data.

Más información

Título según WOS: ID WOS:000413955500035 Not found in local WOS DB
Título de la Revista: IEEE GEOSCIENCE AND REMOTE SENSING LETTERS
Volumen: 14
Número: 11
Editorial: IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Fecha de publicación: 2017
Página de inicio: 2052
Página final: 2056
DOI:

10.1109/LGRS.2017.2750662

Notas: ISI